Fill in the circle for the correct answer.

1. Which shows the shaded part of the fraction bar as the product of a whole number and a unit fraction?

| $\frac{1}{12}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(A) $\frac{4}{12}=4 \cdot \frac{1}{12}$
(C) $\frac{8}{12}=8 \cdot \frac{1}{12}$
(B) $\frac{4}{12}=4 \cdot \frac{4}{12}$
(D) $\frac{8}{12}=8 \cdot \frac{8}{12}$

Solve.
Show your work.
2. Kyle grates $\frac{4}{8}$ pound of cheese for enchiladas. He grates $\frac{2}{8}$ pound of cheese for tacos. Which equation can be used to find how much cheese Kyle grates in all?
(F) $c=\frac{4}{8}+\frac{2}{8} ; \frac{6}{8}$ pound
(H) $c=\frac{4}{8}+\frac{2}{8} ; \frac{6}{16}$ pound
(G) $c=\frac{4}{8}-\frac{2}{8} ; \frac{2}{8}$ pound
(6) $c=\frac{4}{8}-\frac{2}{8} ; \frac{2}{16}$ pound
3. Sam rides his bike $\frac{6}{10}$ mile to the mall. This is $\frac{4}{10}$ mile farther than he rides to the gym. Which equation can be used to find how far Sam rides to the gym?
(A) $\frac{6}{10}-r=\frac{4}{10} ; \frac{2}{20}$ mile
(C) $r=\frac{6}{10}+\frac{4}{10} ; \frac{10}{20}$ mile
(B) $\frac{6}{10}-r=\frac{4}{10} ; \frac{2}{10}$ mile
(D) $r=\frac{6}{10}+\frac{4}{10} ; \frac{10}{10}$ or 1 mile
4. Mehira uses $\frac{3}{4}$ yard of fabric to cover a chair seat.

Which equation can be used to find how many yards she needs to cover 4 chair seats?
(F) $f=4+\frac{3}{4} ; \frac{7}{4}$ yards or $1 \frac{3}{4}$ yards
(H) $f=4 \cdot \frac{3}{4} ; \frac{7}{4}$ yards or $1 \frac{3}{4}$ yards
(G) $f=4+\frac{3}{4} ; 4 \frac{3}{4}$ yards
(®) $f=4 \cdot \frac{3}{4} ; \frac{12}{4}$ yards or 3 yards

Which fraction completes the equation?

5. $\frac{5}{6}=\frac{2}{6}+\frac{2}{6}+$
(A) $\frac{1}{6}$
(C) $\frac{3}{6}$
(B) $\frac{2}{6}$
(D) $\frac{4}{6}$
6. $\frac{8}{8}=\frac{5}{8}+$
(F) $\frac{1}{8}$
(H) $\frac{3}{8}$
(G) $\frac{2}{8}$
(K) $\frac{5}{8}$
7. $\frac{9}{12}=\frac{5}{12}+$
(A) $\frac{3}{12}$
(C) $\frac{5}{12}$
(B) $\frac{4}{12}$
(D) $\frac{7}{12}$

Which shows the fraction as a product of a whole number and a unit fraction?
8. $\frac{9}{10}=$
(F) $9 \cdot \frac{1}{10}$
(H) $10 \cdot \frac{1}{10}$
(C) $9 \cdot \frac{9}{10}$
(6) $10 \cdot \frac{9}{10}$
9. $\frac{2}{5}=$
(A) $5 \cdot \frac{2}{5}$
(C) $2 \cdot \frac{2}{5}$
(B) $5 \cdot \frac{1}{5}$
(D) $2 \cdot \frac{1}{5}$

Multiply.
10. $9 \cdot \frac{1}{8}=$
(F) $\frac{8}{8}$ or 1
(H) $\frac{10}{8}$ or $1 \frac{2}{8}$
(G) $\frac{9}{8}$ or $1 \frac{1}{8}$
(®) $\frac{11}{8}$ or $1 \frac{3}{8}$
11. $4 \times \frac{1}{2}=$
(A) $\frac{8}{2}$ or 4
(C) $\frac{4}{2}$ or 2
(B) $\frac{5}{2}$ or $2 \frac{1}{2}$
(D) $\frac{3}{2}$ or $1 \frac{1}{2}$
12. $5 \cdot \frac{3}{5}=$
13. $7 \cdot \frac{3}{4}=$
(F) $\frac{15}{3}$ or 5
(H) $\frac{10}{3}$ or $3 \frac{1}{3}$
(G) $\frac{15}{5}$ or 3
(®) $\frac{8}{5}$ or $1 \frac{3}{5}$
(A) $\frac{10}{4}$ or $2 \frac{2}{4}$
(C) $\frac{21}{4}$ or $5 \frac{1}{4}$
(B) $\frac{11}{3}$ or $3 \frac{2}{3}$
(D) $\frac{28}{3}$ or $9 \frac{1}{3}$

Add or subtract.

14. $\frac{4}{10}+\frac{3}{10}=$
(F) $\frac{1}{20}$
(G) $\frac{7}{20}$
(H) $\frac{1}{10}$
(K) $\frac{7}{10}$
15. $\frac{5}{8}-\frac{4}{8}=$
(A) $\frac{9}{16}$
(B) $\frac{2}{8}$
(C) $\frac{1}{8}$
(D) $\frac{1}{16}$
16. $2 \frac{7}{10}$
$+3 \frac{9}{10}$
(F) $5 \frac{4}{10}$
(G) $5 \frac{6}{10}$
(H) $6 \frac{4}{10}$
(®) $6 \frac{6}{10}$
17. $\frac{3}{4}-\frac{2}{4}=$
(A) $\frac{1}{8}$
(B) $\frac{1}{4}$
(C) $\frac{2}{4}$
(D) $\frac{5}{8}$
18. $9 \frac{7}{12}-6 \frac{5}{12}=$
(F) $3 \frac{10}{12}$
(G) $3 \frac{2}{12}$
(H) $2 \frac{10}{12}$
(K) $2 \frac{2}{12}$
19. $7 \frac{2}{5}$
$-2 \frac{4}{5}$
(A) $4 \frac{2}{5}$
(B) $4 \frac{3}{5}$
(C) $5 \frac{2}{5}$
(D) $5 \frac{3}{5}$
20. $\frac{8}{5}+\frac{4}{5}=$
(F) $\frac{12}{5}$ or $2 \frac{2}{5}$
(G) $\frac{12}{10}$ or $1 \frac{2}{10}$
(H) $\frac{4}{5}$
(®) $\frac{4}{10}$
21. $4 \frac{1}{6}+2 \frac{5}{6}=$
(A) 7
(B) 6
(C) $2 \frac{4}{6}$
(D) $1 \frac{1}{6}$
22. 5
$-3 \frac{5}{8}$
(F) $1 \frac{3}{8}$
(G) 2
(H) $2 \frac{3}{8}$
(1) 3

Solve.
23. Erin measures $\frac{3}{4}$ inch of snow. It snows some more. Now there are $3 \frac{1}{4}$ inches of snow. How many more inches of snow fell?
(A) $3 \frac{2}{4}$ inches
(C) $2 \frac{2}{4}$ inches
(B) $3 \frac{1}{4}$ inches
(D) $2 \frac{1}{4}$ inches
24. Jorge volunteers $\frac{2}{3}$ hour at the animal shelter on Wednesday. He volunteers 5 times as many hours on Saturday. How many hours does Jorge volunteer on Saturday?

(F) $2 \frac{2}{3}$ hours
(H) $3 \frac{2}{3}$ hours
(G) $3 \frac{1}{3}$ hours
(®) $4 \frac{1}{3}$ hours
25. The line plot shows the lengths of some seashells Colton collected at the beach.

Seashell Lengths (inches)

Colton wants to glue some shells along a 4-inch edge of a picture frame. Which combination of shells would not work?
(A) all of the $\frac{6}{8}$-inch and $\frac{7}{8}$-inch shells
(B) one $\frac{6}{8}$-inch shell, and all of the 1 -inch and $1 \frac{1}{8}$-inch shells
(C) two $\frac{1}{2}$-inch shells, and all of the $\frac{7}{8}$-inch and $1 \frac{2}{8}$-inch shells
(D) two $\frac{6}{8}$-inch shells and all of the $\frac{3}{8}$-inch and $1 \frac{1}{8}$-inch shells

